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Abstract. Within the invariant formalism of the Painlevé analysis, we have derived new exact
solutions of a nonlinear dispersive–dissipative equation, which describes weak nonlinear ion-
acoustic waves in a plasma consisting of cold ions and warm electrons, in terms of Bessel
functions. Furthermore, a travelling wave solution is also obtained in a particular case.

1. Introduction

In recent years, the truncation procedure in Painlevé analysis has been widely used to derive
special solutions of numerous nonlinear evolution equations. However, these solutions were
obtained either by assuming the invariantsC andS (see their definition below) are constant
(Cariello and Tabor 1989, Guo and Chen 1991, Pickering 1993) or by proving their constance
(Conte and Musette 1989).

In this paper, by solving the set of Painlevé–B̈acklund equations, we obtain an explicit
form of both C and S and profit from the linearization property of the Riccati equations
satisfied by the expansion variable to derive exact solutions. The equation we consider
herein is

E ≡ ut + uux + buxxx − a(ut + muux)x = 0 (1)

where subscripts denote partial derivatives. Equation (1) has been derived by Kakutani
and Kawahara (1970) by analysing a two-fluid plasma model, consisting of cold ions and
warm electrons. As far as we know, no exact solutions of (1) have been derived until now.
Recently, Malfliet (1994) has derived a travelling wave solution of (1) form = 0 with the
tanh method (Malfliet 1992). It is worth mentioning that the casem 6= 0 may also be treated
with the same method to retrieve the kink-shaped travelling wave (23).

2. Painlev́e analysis

We now apply the invariant Painlevé analysis to equation (1) and derive its special solutions.
First we recall the main ideas of the invariant formalism of Painlevé analysis (Conte 1989).

Given a movable singular manifold

φ − φ0 = 0 (2)

the expansion variableχ , which must vanish asφ − φ0, is chosen to be

χ = ψ
ψx

=
(

φx

φ − φ0
− φxx

2φx

)−1

ψ = (φ − φ0)φ
1
2
x . (3)
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The variableχ satisfies the Riccati equations

χx = 1 + 1
2Sχ2 (4a)

χt = −C + Cxχ − 1
2(CS + Cxx)χ

2 (4b)

and the variableψ satisfies the linear equations

ψxx = − 1
2Sψ (5a)

ψt = 1
2Cxψ − Cψx (5b)

the coefficients of which are linked by the cross-derivative condition

St + Cxxx + 2CxS + CSx = 0. (6)

S (Schwarzian derivative ofφ) andC are defined by

S = φxxx

φx

− 3

2

(
φxx

φx

)2

C = − φt

φx

(7)

and are invariant under the group of homographic transformations

φ → aφ + b

cφ + d
ad − bc = 1. (8)

In this formalism, one looks for the general solution of (1) in the form

u = χ−α
∞∑

j=0

ujχ
j . (9)

The functionsuj have to be determined by substitution of (9) into (1) which becomes
∞∑

j=0

Ejχ
j−β = 0. (10)

The leading-order analysis givesα = 1, u0 = −2b/d, β = 4 and {−1, 2, 3} as indices,
whered = am. It can easily be checked that (1) does not pass the Painlevé test and is
therefore presumably not integrable. However, one can still determine special solutions by
the truncation procedure, i.e. we look for solutions of (1) in the form

uT = u0χ
−1 + u1. (11)

Substituting (11) in (1), the set of Painlevé–B̈acklund equations to be solved for the validity
of truncation (11) are

j = 1 : b − d2u1 + adC = 0 (12a)

j = 2 : 2aCx − C + u1 − 2du1,x = 0 (12b)

j = 3 : bS − d2Su1 + adCS + adCxx + du1,x − dCx − d2u1,xx = 0 (12c)

j = 4 : −dE(u1) + bCS + bCxx − b2Sxx + bdSxu1

−2abSCx − abCSx − abCxxx + 2bdSu1,x − bSu1 = 0. (12d)

Solving the set of equations (12a–d) together with the compatibility condition (6), we get

C = b

d2 − ad
(13a)

u1 = C (13b)

and

dSxx − Sx = 0 (14a)
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and

St + CSx = 0. (14b)

The general solution of (14a,b) is

S = µ + η exp

(
1

d
(x − Ct)

)
(15)

whereµ andη are arbitrary constants.
In view of an explicit form of the solution (11), we have to determineχ which now

satisfies, whenC is a constant defined by (13a),

χt + Cχx = 0. (16)

We get over this problem by solving the linearized equation (5a), with S given by (15),
which is now an ordinary differential equation of Bessel type (Abramowitz and Stegun
1964) wheret acts as a parameter, i.e.

ψxx + 1

2

[
µ + η exp

(
1

d
(x − Ct)

)]
ψ = 0. (17)

We distinguish three cases:
(i) µη 6= 0. Equation (17) has the following general solution

ψ = AJν(λez) + BJ−ν(λez) z = 1

2d
(x − Ct) (18)

whereJν andJ−ν are Bessel functions of orderν, λ = 2d
√

η/2, ν = 2d
√−µ/2, A andB

are arbitrary constants.
Thereforeχ−1 = ψx/ψ depends on three arbitrary parametersλ, ν and the ratioA/B,

i.e.

χ−1 = ψx

ψ
= λ

2d
ez

[(A/B)J ′
ν(λez) + J ′

−ν(λez)]

(A/B)Jν(λez) + J−ν(λez)
(19)

where the prime stands for the derivative with respect to the argument. The final solution
is then obtained from (11).

(ii) µ = 0. The solutionψ is now a combination of Bessel and Neumann functions (J

andN ) of order zero:

ψ = AJ0(λez) + BN0(λez). (20)

A similar solution to (19) is then obtained withν replaced by zero.
(iii) η = 0. The solution is a kink generated by

ψ = Aeγ (x−Ct) + Be−γ (x−Ct) γ =
√−µ

2
. (21)

Therefore,

χ−1 = ψx

ψ
= γ tanh(γ (x − Ct + x0)) x0 = 1

2γ
ln(A/B). (22)

A kink-shaped travelling wave is then obtained from (11), (13) and (22) in the form

u(x, t) = −2b

d
γ tanh

[
γ

(
x − b

d(d − a)
t + x0

)]
+ b

d(d − a)
. (23)
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3. Conclusion

Besides the usual travelling wave solutions obtained when the invariantsS and C are
constant, we have shown that another type of interesting solutions may be obtained for
non-constant values ofS. Other systems possess solutions to the truncation withS andC

non-constant; one such example is the KPP equation (Conte 1988). Furthermore, Painlevé
transcendents have particular solutions expressible in terms of classical transcendental
functions; in particularPIII is related to the Bessel functions (Lukashevich 1965, 1967).
Particular solutions in terms of Bessel functions have also been used to describe the so-
called modons (Drazin and Johnson 1989).
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